

Power Electronic Systems: Theory and Design

By Jai P. Agrawal

Download now

Read Online

Power Electronic Systems: Theory and Design By Jai P. Agrawal

For one- or two-semester undergraduate courses in Power Electronics. With numerous design examples, illustrations and problems, as well as clearly defined learning objectives for each chapter, the text presents an easy-to-understand development of theory and engineering design aspects of power electronic systems. It provides a conceptual foundation across several disciplines, including electronic devices and circuits, signals and systems, motor drives and control systems. The text then addresses topics unique to power electronics, such as power utilization, quality, interfacing, and design issues. MATLAB is used throughout the text as a tool for enhancing the understanding of converter operation modes by simplifying the necessary mathematical calculations. The text is aimed for the undergraduate courses in engineering programs. It will be above the level of the courses in the technology programs.

[Download Power Electronic Systems: Theory and Design ...pdf](#)

[Read Online Power Electronic Systems: Theory and Design ...pdf](#)

Power Electronic Systems: Theory and Design

By Jai P. Agrawal

Power Electronic Systems: Theory and Design By Jai P. Agrawal

For one- or two-semester undergraduate courses in Power Electronics. With numerous design examples, illustrations and problems, as well as clearly defined learning objectives for each chapter, the text presents an easy-to-understand development of theory and engineering design aspects of power electronic systems. It provides a conceptual foundation across several disciplines, including electronic devices and circuits, signals and systems, motor drives and control systems. The text then addresses topics unique to power electronics, such as power utilization, quality, interfacing, and design issues. MATLAB is used throughout the text as a tool for enhancing the understanding of converter operation modes by simplifying the necessary mathematical calculations. The text is aimed for the undergraduate courses in engineering programs. It will be above the level of the courses in the technology programs.

Power Electronic Systems: Theory and Design By Jai P. Agrawal Bibliography

- Sales Rank: #4447716 in Books
- Published on: 2000-12-07
- Original language: English
- Number of items: 1
- Dimensions: 9.50" h x 1.25" w x 7.63" l, .0 pounds
- Binding: Hardcover
- 562 pages

 [Download Power Electronic Systems: Theory and Design ...pdf](#)

 [Read Online Power Electronic Systems: Theory and Design ...pdf](#)

Editorial Review

From the Inside Flap

PREFACE

The field of power electronics encompasses the application of fundamental concepts in several disciplines: electronic devices and circuits, signals and systems, motor drives, and control systems. A course in power electronics should tie together all these diverse fundamental concepts into a consolidated core and add the considerations of power utilization, quality, interfacing, and design issues, which are special to the field of power electronics. This book is written with the above focus in mind with a conscious effort to simplify mathematics by use of MATLAB™ and to concentrate on developing a robust understanding of the subject. This book is intended as a textbook for a course on power electronics for junior and senior undergraduate students in electrical engineering programs. It could also serve as a self-learning book for practicing engineers. The prerequisites for this book are courses on electrical circuits and systems, electronic devices and circuits, and mathematics courses in calculus, differential equations, Fourier series and transformations, and linear algebra.

This book, intended for a one- or two-semester course, is divided into four parts. Part I presents an overview of the field of power electronics and the review of important mathematical concepts such as determining the average and rms values and the harmonic profile of waveforms, which are essential for understanding the rest of the chapters.

Part II provides an understanding of components used in the design of power electronics circuits in the generic categories of power diodes, transistors, and thyristors. Design of current sources, inductors, and transformers illustrated using design examples. Concepts are introduced for power losses during switching transitions, and on-state and off-state of semiconductor devices. This part also introduces the driver and protection circuits for each device discussed.

Part III discusses the classes of switch-mode converters: dc-dc, dc-ac, ac-dc, ac-ac, and the resonant converters. The focus is on topologies, performance measures, and performance characteristics.

Part IV covers the application systems such as power factor correction, electric utility interfacing, converter control, power supply, electronic ballast, and motor drives. This part also presents practical design issues such as temperature control, selection of heat sinks, protection, packaging, shielding, and layout.

Each chapter contains several, design examples to reinforce the concept learned, which illustrate the decision choices and selection of components. MATLAB® has been used extensively in these examples and also in the elaboration of the converter operation. PSPICE® simulation examples are included wherever possible.

Chapters 1 and 2 provide review and focus on the characteristics of components used in power electronic circuits. Chapters 3 to 5, on semiconductor switching components, may be covered at a faster pace if students have a strong prerequisite in semiconductor devices. Chapters 6 to 11 form the core of the course. Chapters 12, 14, and 15 discuss the design requirements of some specific illustrations and, therefore, can be covered at a faster rate. Chapter 16 on thermal and other design issues, in my opinion, must not be excluded. Chapter 13 presents the development of average and statespace average models of power converter systems followed by the derivation of the transfer function. It is left to instructor's discretion whether to cover it in the undergraduate course or not.

Several reviewers provided valuable assistance during the development of this text, and I am grateful for their input. They are Charles L. Bachman, Southern Polytechnic State University; Shamala Chickamenahalli, Wayne State University; Alexander E. Emanuel, Worcester Polytechnic Institute; Michael L. Holcombe, Purdue University; Rickie L. Miller, Ferris State University; Medhat M. Morcos, Kansas State University; and Shekhar Pradhan, Bluefield State College. As a final note, I am grateful to my wife Vaidehi, my children Sanjay, Vivek and Kshama for their patience and encouragement during the time I devoted to writing and revising this book.

Jai P. Agrawal

From the Back Cover

Divided into four parts, the book presents an array of design examples and problems to keep up with current trends, and satisfies a portion of the ABET design requirements for accreditation. It stands out as a comprehensive, practical, and current textbook in power electronics.

Excerpt. © Reprinted by permission. All rights reserved.

PREFACE

The field of power electronics encompasses the application of fundamental concepts in several disciplines: electronic devices and circuits, signals and systems, motor drives, and control systems. A course in power electronics should tie together all these diverse fundamental concepts into a consolidated core and add the considerations of power utilization, quality, interfacing, and design issues, which are special to the field of power electronics. This book is written with the above focus in mind with a conscious effort to simplify mathematics by use of MATLAB™ and to concentrate on developing a robust understanding of the subject. This book is intended as a textbook for a course on power electronics for junior and senior undergraduate students in electrical engineering programs. It could also serve as a self-learning book for practicing engineers. The prerequisites for this book are courses on electrical circuits and systems, electronic devices and circuits, and mathematics courses in calculus, differential equations, Fourier series and transformations, and linear algebra.

This book, intended for a one- or two-semester course, is divided into four parts. Part I presents an overview of the field of power electronics and the review of important mathematical concepts such as determining the average and rms values and the harmonic profile of waveforms, which are essential for understanding the rest of the chapters.

Part II provides an understanding of components used in the design of power electronics circuits in the generic categories of power diodes, transistors, and thyristors. Design of current sources, inductors, and transformers illustrated using design examples. Concepts are introduced for power losses during switching transitions, and on-state and off-state of semiconductor devices. This part also introduces the driver and protection circuits for each device discussed.

Part III discusses the classes of switch-mode converters: dc-dc, dc-ac, ac-dc, ac-ac, and the resonant converters. The focus is on topologies, performance measures, and performance characteristics.

Part IV covers the application systems such as power factor correction, electric utility interfacing, converter control, power supply, electronic ballast, and motor drives. This part also presents practical design issues such as temperature control, selection of heat sinks, protection, packaging, shielding, and layout.

Each chapter contains several, design examples to reinforce the concept learned, which illustrate the decision choices and selection of components. MATLAB® has been used extensively in these examples and also in the elaboration of the converter operation. PSPICE® simulation examples are included wherever possible.

Chapters 1 and 2 provide review and focus on the characteristics of components used in power electronic circuits. Chapters 3 to 5, on semiconductor switching components, may be covered at a faster pace if students have a strong prerequisite in semiconductor devices. Chapters 6 to 11 form the core of the course. Chapters 12, 14, and 15 discuss the design requirements of some specific illustrations and, therefore, can be covered at a faster rate. Chapter 16 on thermal and other design issues, in my opinion, must not be excluded. Chapter 13 presents the development of average and statespace average models of power converter systems followed by the derivation of the transfer function. It is left to instructor's discretion whether to cover it in the undergraduate course or not.

Several reviewers provided valuable assistance during the development of this text, and I am grateful for their input. They are Charles L. Bachman, Southern Polytechnic State University; Shamala Chickamenahalli, Wayne State University; Alexander E. Emanuel, Worcester Polytechnic Institute; Michael L. Holcombe, Purdue University; Rickie L. Miller, Ferris State University; Medhat M. Morcos, Kansas State University; and Shekhar Pradhan, Bluefield State College. As a final note, I am grateful to my wife Vaidehi, my children Sanjay, Vivek and Kshama for their patience and encouragement during the time I devoted to writing and revising this book.

Jai P. Agrawal

Users Review

From reader reviews:

Richard Puccio:

This Power Electronic Systems: Theory and Design are usually reliable for you who want to be a successful person, why. The key reason why of this Power Electronic Systems: Theory and Design can be one of the great books you must have is giving you more than just simple reading through food but feed a person with information that maybe will shock your preceding knowledge. This book is handy, you can bring it everywhere and whenever your conditions in the e-book and printed types. Beside that this Power Electronic Systems: Theory and Design giving you an enormous of experience such as rich vocabulary, giving you trial run of critical thinking that we realize it useful in your day exercise. So , let's have it and luxuriate in reading.

Hal Clemens:

The reason? Because this Power Electronic Systems: Theory and Design is an unordinary book that the inside of the book waiting for you to snap that but latter it will distress you with the secret this inside. Reading this book beside it was fantastic author who write the book in such awesome way makes the content interior easier to understand, entertaining method but still convey the meaning fully. So , it is good for you for not hesitating having this any more or you going to regret it. This amazing book will give you a lot of positive aspects than the other book include such as help improving your skill and your critical thinking method. So , still want to postpone having that book? If I were you I will go to the reserve store hurriedly.

Jose Shepard:

Do you have something that suits you such as book? The guide lovers usually prefer to decide on book like comic, brief story and the biggest you are novel. Now, why not striving Power Electronic Systems: Theory and Design that give your pleasure preference will be satisfied through reading this book. Reading addiction all over the world can be said as the opportunity for people to know world better than how they react in the direction of the world. It can't be mentioned constantly that reading behavior only for the geeky particular person but for all of you who wants to end up being success person. So, for all you who want to start studying as your good habit, it is possible to pick Power Electronic Systems: Theory and Design become your own personal starter.

Herman Pendergrass:

Reading a guide make you to get more knowledge as a result. You can take knowledge and information from a book. Book is composed or printed or illustrated from each source that will filled update of news. In this particular modern era like today, many ways to get information are available for a person. From media social just like newspaper, magazines, science e-book, encyclopedia, reference book, story and comic. You can add your knowledge by that book. Are you hip to spend your spare time to open your book? Or just looking for the Power Electronic Systems: Theory and Design when you essential it?

Download and Read Online Power Electronic Systems: Theory and Design By Jai P. Agrawal #FLSCEORAW86

Read Power Electronic Systems: Theory and Design By Jai P. Agrawal for online ebook

Power Electronic Systems: Theory and Design By Jai P. Agrawal Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Power Electronic Systems: Theory and Design By Jai P. Agrawal books to read online.

Online Power Electronic Systems: Theory and Design By Jai P. Agrawal ebook PDF download

Power Electronic Systems: Theory and Design By Jai P. Agrawal Doc

Power Electronic Systems: Theory and Design By Jai P. Agrawal Mobipocket

Power Electronic Systems: Theory and Design By Jai P. Agrawal EPub

FLSCEORAW86: Power Electronic Systems: Theory and Design By Jai P. Agrawal