
Design of Embedded Systems Using
68HC12/11 Microcontrollers

By Richard E. Haskell

Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard
E. Haskell

 This is the first book to describe, in detail, the new Motorola 68HC12
microcontroller, how to program it, and how to design embedded systems using
the 68HC12. It shows how WHYP (a version of Forth written specifically for this
book) can be used to program the new 68HC12 microcontroller in an efficient
and interactive way. It includes an abundance of worked examples and complete
C++ code for the WHYP host that runs on the PC. Subroutines and Stacks.
68HC12 Arithmetic. WHYP-An Extensible Language. Branching and Looping.
Parallel Interfacing. The Serial Peripheral Interface (SPI). Analog-to-Digital
Converter. Timers. The Serial Communications Interface (SCI). Designing with
Interrupts. Strings and Number Conversions. Program Control and Data
Structures. Fuzzy Control. Special Topics. WHYP12 C++ Classes. WHYP12
C++ Main Program. For electrical and computer engineers who want to learn
about the new Motorola 68HC12 microcontroller, how to program it, and how to
design embedded systems using it.

 Download Design of Embedded Systems Using 68HC12/11 Microc
...pdf

 Read Online Design of Embedded Systems Using 68HC12/11 Micr
...pdf

http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081

Design of Embedded Systems Using 68HC12/11
Microcontrollers

By Richard E. Haskell

Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell

 This is the first book to describe, in detail, the new Motorola 68HC12 microcontroller, how to program it,
and how to design embedded systems using the 68HC12. It shows how WHYP (a version of Forth written
specifically for this book) can be used to program the new 68HC12 microcontroller in an efficient and
interactive way. It includes an abundance of worked examples and complete C++ code for the WHYP host
that runs on the PC. Subroutines and Stacks. 68HC12 Arithmetic. WHYP-An Extensible Language.
Branching and Looping. Parallel Interfacing. The Serial Peripheral Interface (SPI). Analog-to-Digital
Converter. Timers. The Serial Communications Interface (SCI). Designing with Interrupts. Strings and
Number Conversions. Program Control and Data Structures. Fuzzy Control. Special Topics. WHYP12 C++
Classes. WHYP12 C++ Main Program. For electrical and computer engineers who want to learn about the
new Motorola 68HC12 microcontroller, how to program it, and how to design embedded systems using it.

Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell Bibliography

Sales Rank: #1458111 in Books●

Published on: 1999-10-25●

Original language: English●

Number of items: 1●

Dimensions: 9.75" h x 1.00" w x 7.50" l, 2.22 pounds●

Binding: Paperback●

569 pages●

 Download Design of Embedded Systems Using 68HC12/11 Microc ...pdf

 Read Online Design of Embedded Systems Using 68HC12/11 Micr ...pdf

http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081
http://mbooknom.men/go/best.php?id=0130832081

Download and Read Free Online Design of Embedded Systems Using 68HC12/11 Microcontrollers By
Richard E. Haskell

Editorial Review

From the Inside Flap
Preface

Many people think of a computer as a PC on a desk with a keyboard and video monitor. However, most of
the computers in the world have neither a keyboard nor a video monitor. Rather they are small
microcontrollers—a microprocessor, memory, and 1/0 all on a single chip—that are embedded in a myriad of
other products such as automobiles, televisions, VCRs, cameras, copy machines, cellular telephones, vending
machines, microwave ovens, medical instruments, and hundreds of additional products of all kinds. This
book is about how to program microcontrollers and use them in the design of embedded systems.

A popular microcontroller that has been used in a wide variety of different products is the Motorola 68HC11.
Motorola has recently introduced an upgrade of this microcontroller, the 68HC12, that has new, more
powerful instructions and addressing modes. This book emphasizes the use of the 68HC12 while at the same
time providing information about the 68HC11. It can therefore be used in courses that use both 68HC12 and
68HCll microcontrollers.

This book is the result of teaching various microcomputer interfacing courses over the past 20 years. While
the technology may change, the basic principles of microcomputer interfacing remain largely the same and
these basic principles are stressed throughout this book. However, microcomputer interfacing is a subject
that is learned only by doing. The courses that I have taught using this material have all been project-oriented
courses in which the students design and build real microcomputer interfacing projects.

A definite trend in microcomputer interfacing and in digital design in general is a shift from hardware design
to software design. Microcomputer interfacing has always involved both hardware and software
considerations. However, the increasingly large-scale integration of the hardware together with sophisticated
software tools for designing hardware means that even traditional hardware design is becoming more and
more a software activity.

In the past most software for microcomputer interfacing has been written in assembly language. This means
that each time a new and better microprocessor comes out the designer must first learn the new assembly
language. The advantage of assembly language is that it is "closest to the hardware" and will allow the user
to do exactly what he or she wants in the most efficient manner. While some feel that assembly language
programs are more difficult to write and maintain than programs written in a high-level language, the major
disadvantage of assembly language programs is related to the obsolescence of the microprocessor—when
upgrading to a new or different microprocessor, all of the software has to be rewritten! Even when upgrading
from a 68HCI I to a 68HC12, which is upward compatible at the sourcecode level, to get the best
performance from the 68HC12 you will need to rewrite the code to use the newer, more powerful
instructions and addressing modes.

This has led to a trend of using high-level languages such as C or C+ + for microcomputer interfacing. While
this helps to solve the obsolescence problem—much of the same high-level code might be reusable with a
new microprocessor—high-level languages come with their own problems. The development environment is
not always the most convenient. One has to edit the program, compile it, load it, and then run it to test it on
the real hardware. This edit-compile-test cycle can be very time consuming for large programs. Without

sophisticated run-time debugging tools the debugging of the program on real hardware can be very
frustrating. When designing microcomputer interfaces you would like to be as close to the hardware as
possible.

What you would like is a computer language with the advantages of both a high-level language and assembly
language, with none of the disadvantages. It would be nice if the language were also interactive so that you
could sit at your computer terminal and literally "talk" to the various hardware interfaces. The language
should also produce compact code so that you can easily embed the code in PROMS or flash memory for a
stand-alone system. While you're at it why not embed the entire language in your target system so that you
can develop your program "on-line" and even upgrade the program in the field once the product is delivered.
Impossible, you say? In fact, just such a language exists for almost any microprocessor you may want to use.
The language is Forth and we will use a derivative of it in this book to illustrate how easy microcomputer
interfacing can be.

We will use a unique version of Forth called WHYP (pronounced whip) that is designed for use in embedded
systems. WHYP stands for Words to Help You Program. It is a subroutine threaded language which means
that WHYP words are just the names of 68HC12(11) subroutines. New WHYP words can be defined simply
by stringing previously defined WHYP words together.

A unique feature of Forth—and WHYP—is its simplicity. It is a simple language to learn, to use, and to
understand. In fact, in this book we will develop the entire WHYP language from scratch. We will see that
WHYP consists of two parts—some 68HC12 subroutines that reside on the target system (typically an
evaluation board) and a C+ + program that runs on a PC and communicates with the 68HC12 target system
through a serial line. In the process of developing the WHYP subroutines on the target system you will learn
68HC12 assembly language programming. When you finish the book you will also know Forth. Previous
knowledge of C + + will be helpful in understanding the C+ + portion of WHYP that resides on the PC. The
complete C+ + source code is included on the disk that accompanies this book and in discussed in Chapters
16 and 17. However, these chapters are optional and are not required in order to use WHYP to program the
68HC12.

You will discover that you can develop large software projects using WHYP in a much shorter time than you
could develop the same program in either assembly language or C. You might be surprised at the number of
industrial embedded systems projects that have been developed in Forth. Many small companies and
consultants that use Forth don't talk much about it because many consider it a competitive advantage to be
able to develop software in a shorter time than others who program in assembly language or C.

In Chapter 1 you will learn about the architecture of the 68HC12 and how to write a simple assembly
language program, assemble it, download it to the target board, and execute it. You will see how to write
68HC12 subroutines in Chapter 2 where you will learn how the system stack works. We will then develop a
separate data stack, using the 68HC12 index register, X, as a stack pointer. This data stack will be used
throughout the book to pass parameters to and from our 68HC12 subroutines (WHYP words). We will see in
Chapter 2 that this makes it possible to access our 68HC12 subroutines interactively, by simply typing the
name of the subroutine on the PC keyboard.

In Chapter 3 we will study 68HC12 arithmetic with emphasis on the new 16-bit signed and unsigned
multiplication and division instructions available on the 68HC12. We will use these instructions to create
WHYP words for all of the arithmetic operations.

The power of WHYP comes from the fact that you can define new WHYP words in terms of previously
defined words. This makes WHYP an extensible language in which every time you write a WHYP program

you are really extending the language by adding new words to its dictionary. You will learn how to do this in
Chapter 4.

In Chapter 5 we will took at the 68HC12 branching and looping instructions and see how we can use them to
build some high-level WHYP branching and looping words such as an IF ... ELSE ... THEN construct and a
FOR ... NEXT loop. We will also see in this chapter how we can do recursion in WHYP, that is, how we can
have a WHYP word call itself.

After the first five chapters you should have a good understanding of the 68HC12 instructions and how they
are used to create the WHYP language. The next six chapters will use WHYP as a tool to explore and
understand the 1/0 capabilities of the 68HC12 (and 68HC11). The important topic of interrupts is introduced
in Chapter 6 and specific examples of using interrupts in conjunction with various 1/0 functions are given in
Chapters 7-11.

Parallel interfacing will be discussed in Chapter 7 where examples will be given of interfacing a 6SHC12 to
seven-segment displays, hex keypads, and liquid crystal displays. Real-time interrupts are used to program
interrupt-driven traffic lights.

Chapter 8 will cover the 68HC12 Serial Peripheral Interface (SPI) where it will be shown how to interface
keypads and sevensegment displays using the SPI. The 68HCll and 68HC12 Analog-to-Digital (A/D)
converter is described in Chapter 9 where an example is given of the design of a digital compass.

The 68HC12 programmable timer is discussed in Chapter 10 where examples are given of using output
compares, input captures, an

From the Back Cover

This is the first book to describe, in detail, the new Motorola 68HC12 microcontroller, how to program it,
and how to design embedded systems using the 68HC12. It shows how WHYP (a version of Forth written
specifically for this book) can be used to program the new 68HC12 microcontroller in an efficient and
interactive way.

FEATURES/BENEFITS

A bridge between the 68HC12 and the 68HC11—Focuses on the 68HC12, but includes material for (and●

provides software for) the older 68HC11.
A new version of Forth—WHYP (Words to Help You Program)—designed for use in embedded●

systems

Complete C++ code for the WHYP host that runs on the PC—Provided with the book and described in
Chs. 16 and 17. Includes both the C++ program that runs on the PC, and the 68HC12 assembly language
program that runs on the target 68HC12 board. Excerpt. © Reprinted by permission. All rights reserved.
PrefaceMany people think of a computer as a PC on a desk with a keyboard and video monitor. However,
most of the computers in the world have neither a keyboard nor a video monitor. Rather they are small
microcontrollers—a microprocessor, memory, and 1/0 all on a single chip—that are embedded in a myriad of
other products such as automobiles, televisions, VCRs, cameras, copy machines, cellular telephones, vending
machines, microwave ovens, medical instruments, and hundreds of additional products of all kinds. This
book is about how to program microcontrollers and use them in the design of embedded systems. A popular
microcontroller that has been used in a wide variety of different products is the Motorola 68HC11. Motorola
has recently introduced an upgrade of this microcontroller, the 68HC12, that has new, more powerful

instructions and addressing modes. This book emphasizes the use of the 68HC12 while at the same time
providing information about the 68HC11. It can therefore be used in courses that use both 68HC12 and
68HCll microcontrollers. This book is the result of teaching various microcomputer interfacing courses over
the past 20 years. While the technology may change, the basic principles of microcomputer interfacing
remain largely the same and these basic principles are stressed throughout this book. However,
microcomputer interfacing is a subject that is learned only by doing. The courses that I have taught using this
material have all been project-oriented courses in which the students design and build real microcomputer
interfacing projects. A definite trend in microcomputer interfacing and in digital design in general is a shift
from hardware design to software design. Microcomputer interfacing has always involved both hardware and
software considerations. However, the increasingly large-scale integration of the hardware together with
sophisticated software tools for designing hardware means that even traditional hardware design is becoming
more and more a software activity. In the past most software for microcomputer interfacing has been written
in assembly language. This means that each time a new and better microprocessor comes out the designer
must first learn the new assembly language. The advantage of assembly language is that it is "closest to the
hardware" and will allow the user to do exactly what he or she wants in the most efficient manner. While
some feel that assembly language programs are more difficult to write and maintain than programs written in
a high-level language, the major disadvantage of assembly language programs is related to the obsolescence
of the microprocessor—when upgrading to a new or different microprocessor, all of the software has to be
rewritten! Even when upgrading from a 68HCI I to a 68HC12, which is upward compatible at the sourcecode
level, to get the best performance from the 68HC12 you will need to rewrite the code to use the newer, more
powerful instructions and addressing modes. This has led to a trend of using high-level languages such as C
or C+ + for microcomputer interfacing. While this helps to solve the obsolescence problem—much of the
same high-level code might be reusable with a new microprocessor—high-level languages come with their
own problems. The development environment is not always the most convenient. One has to edit the
program, compile it, load it, and then run it to test it on the real hardware. This edit-compile-test cycle can be
very time consuming for large programs. Without sophisticated run-time debugging tools the debugging of
the program on real hardware can be very frustrating. When designing microcomputer interfaces you would
like to be as close to the hardware as possible. What you would like is a computer language with the
advantages of both a high-level language and assembly language, with none of the disadvantages. It would
be nice if the language were also interactive so that you could sit at your computer terminal and literally
"talk" to the various hardware interfaces. The language should also produce compact code so that you can
easily embed the code in PROMS or flash memory for a stand-alone system. While you're at it why not
embed the entire language in your target system so that you can develop your program "on-line" and even
upgrade the program in the field once the product is delivered. Impossible, you say? In fact, just such a
language exists for almost any microprocessor you may want to use. The language is Forth and we will use a
derivative of it in this book to illustrate how easy microcomputer interfacing can be. We will use a unique
version of Forth called WHYP (pronounced whip) that is designed for use in embedded systems. WHYP
stands for Words to Help You Program. It is a subroutine threaded language which means that WHYP words
are just the names of 68HC12(11) subroutines. New WHYP words can be defined simply by stringing
previously defined WHYP words together. A unique feature of Forth—and WHYP—is its simplicity. It is a
simple language to learn, to use, and to understand. In fact, in this book we will develop the entire WHYP
language from scratch. We will see that WHYP consists of two parts—some 68HC12 subroutines that reside
on the target system (typically an evaluation board) and a C+ + program that runs on a PC and communicates
with the 68HC12 target system through a serial line. In the process of developing the WHYP subroutines on
the target system you will learn 68HC12 assembly language programming. When you finish the book you
will also know Forth. Previous knowledge of C + + will be helpful in understanding the C+ + portion of
WHYP that resides on the PC. The complete C+ + source code is included on the disk that accompanies this
book and in discussed in Chapters 16 and 17. However, these chapters are optional and are not required in
order to use WHYP to program the 68HC12. You will discover that you can develop large software projects

using WHYP in a much shorter time than you could develop the same program in either assembly language
or C. You might be surprised at the number of industrial embedded systems projects that have been
developed in Forth. Many small companies and consultants that use Forth don't talk much about it because
many consider it a competitive advantage to be able to develop software in a shorter time than others who
program in assembly language or C. In Chapter 1 you will learn about the architecture of the 68HC12 and
how to write a simple assembly language program, assemble it, download it to the target board, and execute
it. You will see how to write 68HC12 subroutines in Chapter 2 where you will learn how the system stack
works. We will then develop a separate data stack, using the 68HC12 index register, X, as a stack pointer.
This data stack will be used throughout the book to pass parameters to and from our 68HC12 subroutines
(WHYP words). We will see in Chapter 2 that this makes it possible to access our 68HC12 subroutines
interactively, by simply typing the name of the subroutine on the PC keyboard. In Chapter 3 we will study
68HC12 arithmetic with emphasis on the new 16-bit signed and unsigned multiplication and division
instructions available on the 68HC12. We will use these instructions to create WHYP words for all of the
arithmetic operations. The power of WHYP comes from the fact that you can define new WHYP words in
terms of previously defined words. This makes WHYP an extensible language in which every time you write
a WHYP program you are really extending the language by adding new words to its dictionary. You will
learn how to do this in Chapter 4. In Chapter 5 we will took at the 68HC12 branching and looping
instructions and see how we can use them to build some high-level WHYP branching and looping words
such as an IF ... ELSE ... THEN construct and a FOR ... NEXT loop. We will also see in this chapter how we
can do recursion in WHYP, that is, how we can have a WHYP word call itself. After the first five chapters
you should have a good understanding of the 68HC12 instructions and how they are used to create the
WHYP language. The next six chapters will use WHYP as a tool to explore and understand the 1/0
capabilities of the 68HC12 (and 68HC11). The important topic of interrupts is introduced in Chapter 6 and
specific examples of using interrupts in conjunction with various 1/0 functions are given in Chapters 7-11.
Parallel interfacing will be discussed in Chapter 7 where examples will be given of interfacing a 6SHC12 to
seven-segment displays, hex keypads, and liquid crystal displays. Real-time interrupts are used to program
interrupt-driven traffic lights. Chapter 8 will cover the 68HC12 Serial Peripheral Interface (SPI) where it will
be shown how to interface keypads and sevensegment displays using the SPI. The 68HCll and 68HC12
Analog-to-Digital (A/D) converter is described in Chapter 9 where an example is given of the design of a
digital compass. The 68HC12 programmable timer is discussed in Chapter 10 where examples are given of
using output compares, input captures, and the pulse accumulator. Examples of using interrupts include the
generation of a pulse train and the measurement of the period of a pulse train. An example of storing hex
keypad pressings in a circular queue using interrupts is also included in Chapter 10. As a final example of
using interrupts a design is given of a sonar tape measure using the Polaroid ultrasonic transducer. Chapter
11 deals with the Serial Communication Interface (SCI) which is the module used by the 68HC12 to
communicate with the PC. Chapters 1-11 provide all the basic material needed to program a 68HC12
microcontroller for most applications. These chapters can form the basis of a one-term projects-oriented
capstone design course at the senior/graduate level. The material in Chapters 12 and 13 will be of interest to
those who want access to more advanced topics related to programming in WHYP Chapter 12 describes how
to convert ASCII number strings to binary numbers and vi... Users ReviewFrom reader reviews:
Charles Alexander:The knowledge that you get from Design of Embedded Systems Using 68HC12/11
Microcontrollers may be the more deep you rooting the information that hide into the words the more you
get interested in reading it. It doesn't mean that this book is hard to be aware of but Design of Embedded
Systems Using 68HC12/11 Microcontrollers giving you buzz feeling of reading. The article writer conveys
their point in a number of way that can be understood by means of anyone who read it because the author of
this publication is well-known enough. This specific book also makes your own vocabulary increase well.
Making it easy to understand then can go with you, both in printed or e-book style are available. We advise
you for having this specific Design of Embedded Systems Using 68HC12/11 Microcontrollers instantly.
Jesse Reid:Often the book Design of Embedded Systems Using 68HC12/11 Microcontrollers has a lot details

on it. So when you check out this book you can get a lot of advantage. The book was written by the very
famous author. Mcdougal makes some research prior to write this book. This particular book very easy to
read you can get the point easily after looking over this book.
Lamont Williams:Reading can called imagination hangout, why? Because when you are reading a book
particularly book entitled Design of Embedded Systems Using 68HC12/11 Microcontrollers the mind will
drift away trough every dimension, wandering in every single aspect that maybe unfamiliar for but surely
will end up your mind friends. Imaging each and every word written in a publication then become one form
conclusion and explanation this maybe you never get just before. The Design of Embedded Systems Using
68HC12/11 Microcontrollers giving you one more experience more than blown away your brain but also
giving you useful info for your better life in this era. So now let us explain to you the relaxing pattern at this
point is your body and mind will be pleased when you are finished examining it, like winning a casino game.
Do you want to try this extraordinary spending spare time activity?
Glenn Herrera:Design of Embedded Systems Using 68HC12/11 Microcontrollers can be one of your basic
books that are good idea. We all recommend that straight away because this publication has good vocabulary
that can increase your knowledge in language, easy to understand, bit entertaining but delivering the
information. The article writer giving his/her effort to place every word into delight arrangement in writing
Design of Embedded Systems Using 68HC12/11 Microcontrollers but doesn't forget the main level, giving
the reader the hottest along with based confirm resource facts that maybe you can be among it. This great
information can certainly drawn you into brand-new stage of crucial considering.
Download and Read Online Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard
E. Haskell #28QBOWC0HPG

Read Design of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell for online
ebookDesign of Embedded Systems Using 68HC12/11 Microcontrollers By Richard E. Haskell Free PDF
d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books
online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF
best books to read, top books to read Design of Embedded Systems Using 68HC12/11 Microcontrollers By
Richard E. Haskell books to read online.Online Design of Embedded Systems Using 68HC12/11
Microcontrollers By Richard E. Haskell ebook PDF downloadDesign of Embedded Systems Using
68HC12/11 Microcontrollers By Richard E. Haskell DocDesign of Embedded Systems Using 68HC12/11
Microcontrollers By Richard E. Haskell MobipocketDesign of Embedded Systems Using 68HC12/11
Microcontrollers By Richard E. Haskell EPub28QBOWC0HPG: Design of Embedded Systems Using
68HC12/11 Microcontrollers By Richard E. Haskell

