

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences)

By Jan Dirk Jansen

[Download now](#)

[Read Online](#)

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen

This text forms part of material taught during a course in advanced reservoir simulation at Delft University of Technology over the past 10 years. The contents have also been presented at various short courses for industrial and academic researchers interested in background knowledge needed to perform research in the area of closed-loop reservoir management, also known as smart fields, related to e.g. model-based production optimization, data assimilation (or history matching), model reduction, or upscaling techniques. Each of these topics has connections to system-theoretical concepts.

The introductory part of the course, i.e. the systems description of flow through porous media, forms the topic of this brief monograph. The main objective is to present the classic reservoir simulation equations in a notation that facilitates the use of concepts from the systems-and-control literature. Although the theory is limited to the relatively simple situation of horizontal two-phase (oil-water) flow, it covers several typical aspects of porous-media flow.

The first chapter gives a brief review of the basic equations to represent single-phase and two-phase flow. It discusses the governing partial-differential equations, their physical interpretation, spatial discretization with finite differences, and the treatment of wells. It contains well-known theory and is primarily meant to form a basis for the next chapter where the equations will be reformulated in terms of systems-and-control notation.

The second chapter develops representations in state-space notation of the porous-media flow equations. The systematic use of matrix partitioning to describe the different types of inputs leads to a description in terms of nonlinear ordinary-differential and algebraic equations with (state-dependent) system, input, output and direct-throughput matrices. Other topics include generalized state-space representations, linearization, elimination of prescribed pressures, the tracing of stream lines, lift tables, computational aspects, and the derivation of an energy balance for porous-media flow.

The third chapter first treats the analytical solution of linear systems of ordinary differential equations for single-phase flow. Next it moves on to the numerical solution of the two-phase flow equations, covering various aspects like implicit, explicit or mixed (IMPES) time discretizations and associated stability issues,

Newton-Raphson iteration, streamline simulation, automatic time-stepping, and other computational aspects. The chapter concludes with simple numerical examples to illustrate these and other aspects such as mobility effects, well-constraint switching, time-stepping statistics, and system-energy accounting. The contents of this brief should be of value to students and researchers interested in the application of systems-and-control concepts to oil and gas reservoir simulation and other applications of subsurface flow simulation such as CO₂ storage, geothermal energy, or groundwater remediation.

 [Download A Systems Description of Flow Through Porous Media ...pdf](#)

 [Read Online A Systems Description of Flow Through Porous Med ...pdf](#)

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences)

By Jan Dirk Jansen

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen

This text forms part of material taught during a course in advanced reservoir simulation at Delft University of Technology over the past 10 years. The contents have also been presented at various short courses for industrial and academic researchers interested in background knowledge needed to perform research in the area of closed-loop reservoir management, also known as smart fields, related to e.g. model-based production optimization, data assimilation (or history matching), model reduction, or upscaling techniques. Each of these topics has connections to system-theoretical concepts.

The introductory part of the course, i.e. the systems description of flow through porous media, forms the topic of this brief monograph. The main objective is to present the classic reservoir simulation equations in a notation that facilitates the use of concepts from the systems-and-control literature. Although the theory is limited to the relatively simple situation of horizontal two-phase (oil-water) flow, it covers several typical aspects of porous-media flow.

The first chapter gives a brief review of the basic equations to represent single-phase and two-phase flow. It discusses the governing partial-differential equations, their physical interpretation, spatial discretization with finite differences, and the treatment of wells. It contains well-known theory and is primarily meant to form a basis for the next chapter where the equations will be reformulated in terms of systems-and-control notation. The second chapter develops representations in state-space notation of the porous-media flow equations. The systematic use of matrix partitioning to describe the different types of inputs leads to a description in terms of nonlinear ordinary-differential and algebraic equations with (state-dependent) system, input, output and direct-throughput matrices. Other topics include generalized state-space representations, linearization, elimination of prescribed pressures, the tracing of stream lines, lift tables, computational aspects, and the derivation of an energy balance for porous-media flow.

The third chapter first treats the analytical solution of linear systems of ordinary differential equations for single-phase flow. Next it moves on to the numerical solution of the two-phase flow equations, covering various aspects like implicit, explicit or mixed (IMPES) time discretizations and associated stability issues, Newton-Raphson iteration, streamline simulation, automatic time-stepping, and other computational aspects. The chapter concludes with simple numerical examples to illustrate these and other aspects such as mobility effects, well-constraint switching, time-stepping statistics, and system-energy accounting.

The contents of this brief should be of value to students and researchers interested in the application of systems-and-control concepts to oil and gas reservoir simulation and other applications of subsurface flow simulation such as CO₂ storage, geothermal energy, or groundwater remediation.

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen Bibliography

- Sales Rank: #5239047 in Books
- Brand: Brand: Springer
- Published on: 2013-06-05

- Released on: 2013-06-05
- Original language: English
- Number of items: 1
- Dimensions: 9.25" h x .31" w x 6.10" l, .44 pounds
- Binding: Paperback
- 119 pages

[Download A Systems Description of Flow Through Porous Media ...pdf](#)

[Read Online A Systems Description of Flow Through Porous Med ...pdf](#)

Download and Read Free Online A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen

Editorial Review

Review

From the book reviews:

“This book provides a comprehensive presentation of mathematical and physical theories of flows and transport in porous media, pointing out the most important practical applications. The book is excellently written and readable. Results of numerical solutions are given graphically and in tabular form. The book will be of great interest to a wide range of specialists working in the area of flows in porous media.” (Ioan Pop, zbMATH, Vol. 1290, 2014)

Users Review

From reader reviews:

Sarah Maddocks:

The book A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) can give more knowledge and information about everything you want. So just why must we leave a good thing like a book A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences)? A few of you have a different opinion about book. But one aim which book can give many facts for us. It is absolutely right. Right now, try to closer along with your book. Knowledge or info that you take for that, you may give for each other; you may share all of these. Book A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) has simple shape nevertheless, you know: it has great and large function for you. You can search the enormous world by available and read a guide. So it is very wonderful.

Sean Scruggs:

Many people spending their time by playing outside together with friends, fun activity along with family or just watching TV the whole day. You can have new activity to pay your whole day by studying a book. Ugh, do you consider reading a book can actually hard because you have to bring the book everywhere? It alright you can have the e-book, getting everywhere you want in your Smart phone. Like A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) which is getting the e-book version. So , why not try out this book? Let's find.

Maria Smith:

This A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) is fresh way for you who has interest to look for some information given it relief your hunger info. Getting deeper you upon it getting knowledge more you know or perhaps you who still having bit of digest in reading this A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) can be the light food in your case because the information inside this particular book is easy to get through anyone. These books

acquire itself in the form that is reachable by anyone, sure I mean in the e-book type. People who think that in publication form make them feel sleepy even dizzy this publication is the answer. So there isn't any in reading a publication especially this one. You can find what you are looking for. It should be here for a person. So , don't miss it! Just read this e-book sort for your better life in addition to knowledge.

Tom Carter:

As a student exactly feel bored to help reading. If their teacher asked them to go to the library or make summary for some reserve, they are complained. Just little students that has reading's heart and soul or real their hobby. They just do what the educator want, like asked to go to the library. They go to right now there but nothing reading seriously. Any students feel that examining is not important, boring and also can't see colorful pictures on there. Yeah, it is to become complicated. Book is very important for yourself. As we know that on this period, many ways to get whatever you want. Likewise word says, ways to reach Chinese's country. Therefore , this A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) can make you sense more interested to read.

Download and Read Online A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen #GM0YR28OA9S

Read A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen for online ebook

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen books to read online.

Online A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen ebook PDF download

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen Doc

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen MobiPocket

A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen EPub

GM0YR28OA9S: A Systems Description of Flow Through Porous Media (SpringerBriefs in Earth Sciences) By Jan Dirk Jansen